Stock Price Forecasting using Tensorflow.js and LSTM, based on a well-documented project: - CoPilot Generated

Project Example: Stock Price Forecasting with Tensorflow.js

A GitHub project by jinglescode demonstrates how to:

  • Pull stock prices using the Alpha Vantage API
  • Preprocess data using Simple Moving Average
  • Train an LSTM neural network in Tensorflow.js
  • Predict future stock prices and compare them to actual values

Why LSTM for Time Series?

LSTM (Long Short-Term Memory) networks are ideal for time series because they:

  • Capture long-term dependencies
  • Handle non-linear relationships
  • Work with variable-length sequences
  • Automatically learn relevant features from raw data

๐Ÿ› ️ Tensorflow.js Implementation Tips

To build your own LSTM time series model in TensorFlow.js:
  1. Prepare your data: Normalize and shape it into sequences.
  2. Define the model:
    
    const model = tf.sequential();
    model.add(tf.layers.lstm({ units: 50, returnSequences: false, inputShape: [sequenceLength, numFeatures] }));
    model.add(tf.layers.dense({ units: 1 }));
    model.compile({ optimizer: 'adam', loss: 'meanSquaredError' });
    
  3. Train the model:
    
     await model.fit(trainX, trainY, {
      epochs: 50,
      batchSize: 32,
      validationSplit: 0.2,
      callbacks: tf.callbacks.earlyStopping({ monitor: 'val_loss', patience: 5 })
    });
  4. Make predictions and visualize results using libraries like Chart.js or D3.js.

๐Ÿงช Step-by-Step: LSTM Time Series Forecasting in Tensorflow.js

  1. ๐Ÿ“Š Choose or Load Your Dataset

    You’ll need a time series dataset. Here are a few options:

    • Weather data (e.g., daily temperature)
    • Stock prices (e.g., closing prices)
    • Sensor readings (e.g., IoT data)

  2. ๐Ÿงน Preprocess the Data
    • Normalize values (e.g., MinMax scaling)
    • Create sequences of fixed length (e.g., 30 days of data to predict the next day)
      
       function createSequences(data, sequenceLength) {
        const sequences = [];
        const labels = [];
        for (let i = 0; i < data.length - sequenceLength; i++) {
          sequences.push(data.slice(i, i + sequenceLength));
          labels.push(data[i + sequenceLength]);
        }
        return { sequences, labels };
      } 
      
  3. ๐Ÿง  Build the LSTM Model
    
      	const model = tf.sequential();
      	model.add(tf.layers.lstm({
      	units: 64,
      	inputShape: [sequenceLength, 1],
      	returnSequences: false
    	}));
    	model.add(tf.layers.dense({ units: 1 }));
    	model.compile({ optimizer: 'adam', loss: 'meanSquaredError' });
    
  4. ๐Ÿ‹️ Train the Model
    
      await model.fit(trainX, trainY, {
      epochs: 50,
      batchSize: 32,
      validationSplit: 0.2,
      callbacks: tf.callbacks.earlyStopping({ monitor: 'val_loss', patience: 5 })
    });
    
  5. ๐Ÿ”ฎ Make Predictions
    
    const prediction = model.predict(tf.tensor3d([yourSequence], [1, sequenceLength, 1]));
    prediction.print();
    
  6. ๐Ÿ“ˆ Visualize Results

    Use Chart.js or D3.js to plot actual vs predicted values.

๐Ÿงฐ Tools You’ll Need

Comments

Popular posts from this blog

Decompiling Delphi - 3

Decompiling Delphi - 2

Demystifying DevExpress XtraReport for Silverlight - Part 3