Stock Price Forecasting using Tensorflow.js and LSTM, based on a well-documented project: - CoPilot Generated
Project Example: Stock Price Forecasting with Tensorflow.js
A GitHub project by jinglescode demonstrates how to:
- Pull stock prices using the Alpha Vantage API
- Preprocess data using Simple Moving Average
- Train an LSTM neural network in Tensorflow.js
- Predict future stock prices and compare them to actual values
Why LSTM for Time Series?
LSTM (Long Short-Term Memory) networks are ideal for time series because they:
- Capture long-term dependencies
- Handle non-linear relationships
- Work with variable-length sequences
- Automatically learn relevant features from raw data
๐ ️ Tensorflow.js Implementation Tips
To build your own LSTM time series model in TensorFlow.js:
- Prepare your data: Normalize and shape it into sequences.
- Define the model:
const model = tf.sequential(); model.add(tf.layers.lstm({ units: 50, returnSequences: false, inputShape: [sequenceLength, numFeatures] })); model.add(tf.layers.dense({ units: 1 })); model.compile({ optimizer: 'adam', loss: 'meanSquaredError' });
- Train the model:
await model.fit(trainX, trainY, { epochs: 50, batchSize: 32, validationSplit: 0.2, callbacks: tf.callbacks.earlyStopping({ monitor: 'val_loss', patience: 5 }) });
- Make predictions and visualize results using libraries like Chart.js or D3.js.
๐งช Step-by-Step: LSTM Time Series Forecasting in Tensorflow.js
- ๐ Choose or Load Your Dataset
You’ll need a time series dataset. Here are a few options:
- Weather data (e.g., daily temperature)
- Stock prices (e.g., closing prices)
- Sensor readings (e.g., IoT data)
- ๐งน Preprocess the Data
- Normalize values (e.g., MinMax scaling)
- Create sequences of fixed length (e.g., 30 days of data to predict the next day)
function createSequences(data, sequenceLength) { const sequences = []; const labels = []; for (let i = 0; i < data.length - sequenceLength; i++) { sequences.push(data.slice(i, i + sequenceLength)); labels.push(data[i + sequenceLength]); } return { sequences, labels }; }
- ๐ง Build the LSTM Model
const model = tf.sequential(); model.add(tf.layers.lstm({ units: 64, inputShape: [sequenceLength, 1], returnSequences: false })); model.add(tf.layers.dense({ units: 1 })); model.compile({ optimizer: 'adam', loss: 'meanSquaredError' });
- ๐️ Train the Model
await model.fit(trainX, trainY, { epochs: 50, batchSize: 32, validationSplit: 0.2, callbacks: tf.callbacks.earlyStopping({ monitor: 'val_loss', patience: 5 }) });
- ๐ฎ Make Predictions
const prediction = model.predict(tf.tensor3d([yourSequence], [1, sequenceLength, 1])); prediction.print();
- ๐ Visualize Results
๐งฐ Tools You’ll Need
- Tensorflow.js: npm install @tensorflow/tfjs
- Chart.js (optional): npm install chart.js
Comments
Post a Comment